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Abstract 

ZnS crystals having wide polytypic regions were grown 
in sublimation. Twelve new polytypes of the family 18L 
were identified in one specimen. X-ray 10. l oscillation 
photographs are presented, the observed and cal- 
culated intensities are compared. A modified expres- 
sion for intensity computations of rhombohedral 
polytypes is described. 

Introduction 

ZnS crystals grown by sublimation of a large number 
of adjacent regions stacked along their common c axis. 
Most of these regions are faulted 2H structures. A 
small number of specimens contain uniform polytypic 
regions, most of them less than 100/an wide (along 
their c axis), wider regions are rare and regions of 500 
~tm are extremely rare (Alexander, Kalman, Mardix & 
Steinberger, 1970). 

Experimental 

The polytypes reported here were found in a platelet 
(specimen 17-1) grown by the static sublimation 
method (Pfitek, 1961) with strict stabilization of 
temperature (_+0.02 K) and pressure (+ 100 Pa) during 
growth. A peculiar characteristic of the crystals is the 
abundance of specimens with wide uniform polytypic 
regions: tens of specimens were found in each growth 
batch containing polytypic regions of 500 /tm and 
wider. 

* In partial fulfilment of requirements for the BS degree. 
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Cu Ka radiation was used to take the 10.l row 
lines 10 ° e-axis oscillation photographs of the poly- 
types. These are presented in Fig. 1. A list of all 
currently identified ZnS polytypes of the family 18L is 
given in Table 1. Observed and calculated intensities of 
the 10. l reflections of the new polytypes are compared 
in Table 2. The calculated intensities are proportional 
to I FI 2, where F is the structure factor: they include the 
Lorentz and polarization factors and are normalized to 
give the strongest intensity as 100.000. 

The method of identification used is the 'elimination 
method' reported previously (Mardix, Kalman & 
Steinberger, 1970). 

The structure factor of rhombohedral polytypes 

The expression for the structure factor of a ZnS 
polytype commonly used in computations is given by 
(Mardix, Kalman & Steinberger, 1970): 

IFhk.t 12 = f2ltOhk.tl2 

where 

3n/ 
f 2 =  + fs + 2fz. A c o s -  

2n 

fz,  and fs are the atomic scattering factors of Zn and 
S, respectively, n is the number of layers in the unit cell. 

F o r h - k =  l m o d 3 :  

Iq)hk.t 12= COS 2n + 
2=1 

+ [z~l sin 27r (--~- + -~-) 1 2 
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The summation is over all layers in the unit cell; z is the 
cardinal number of  the layer and a s equals 0, 1 or 2 for 
A, B or C layers. 
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Fig. 1. 10.1 row lines o f  10 ° ¢ axis Cu K oscillation X-ray 
photographs of  the new polytypes.  Collimator 0.2  mm; recorded 
on a flat film at a distance o f  60 mm from the specimen. The zero 
line is indicated by an arrow. Magnification: ×2. (1) 54R (13 5)3; 
(2) 18L (15 3); (3) 54R (6 5 4 3)3; (4) 54R (6 5 5 2)3; (5) 18L 
(7 3 5 3) and two unidentified 54R rhombohedral polytypes,  (6) 
18L (8 3 4 3): (7) 54R (8 4 3 3) 3 and 18L (9 3 3 3); (8) 54R 
(8 5 2 3)3: (9) 54R (9 4 2 3)3: ( I0)  54R (4 3 4 3 2 2)3:(11)  18L 
( 8 2 2 2 2 2 ) •  

Table 1. List of currently identified polytypes of the 
family 18L 

Structures Reference 

54R (10 8) 3 (a) 
54R (13 5) 3 New 
18L (15 3) New 
18L (5 5 4 4) (b) 
54R (5 5 5 3) 3 (b) 
18L (6 5 3 4) (b) 
54R (6 5 4 3) 3 New 
54R (6 5 5 2) 3 New 
18L (7 3 5 3) New 
54R (7 3 6 2)~ (b) 
18L (7 5 2 4) (b) 
54R (7 5 3 3) 3 (b) 
18L (8 3 4 3) New 
54R (8 4 3 3) 3 New 
54R (8 5 2 3) 3 New 
18L (9 3 3 3) New 
54R (9 4 2 3)~ New 
5 4 R ( 4 3 4 3 2 2 )  3 New 
18L (8 2 2 2 2 2) New 

References: (a) Kiflawi. Mardix & Steinberger (1969): (b) Kiflawi. Mardix 
& Kalman (1969)• 

For hexagonal polytypes (space groups P3ml and 
P63mc) n = m, where m is the number of  layers in the 
elementary stacking sequence, while for rhombohedral 
polytypes (space group R3m) of the same family 
(Mardix, Alexander, Brafman & Steinberger, 1967) 
n = 3m. As a result two separate computer programs 
for hexagonal and rhombohedral polytypes are needed 
in the 'elimination method'. 

The expression for the structure factor of rhombo- 
hedral polytypes can be rewritten to include sums of  
terms related to layers in the elementary stacking 
sequence rather than in the rhombohedral unit cell. The 
expression is correct only for those reflections which 
are not typical extinctions for the rhombohedral cell, 
namely l = 3r - 1, and l = 3r + 1 for cyclic and 
anti-cyclic structures, respectively, where r is an integer 
(l = 3r for an n-layered hexagonal polytype). But 
certainly, only the intensities of  the non-extinct re- 
flections have to be calculated• 

The modified expression for I(0hk .tl 2 for hexagonal or 
rhombohedral polytypes is given by (for h - k = 1 mod 
3): 

[ ~  (--~- a' + t z / m ) ]  2 
I~Phk.i 12 ---- COS 2 n  + 

z_-i 3 

+ sin 2~r + , 
• --i 3 

where t equals 0, - 1  and +1 for hexagonal rhombo- 
hedral and rhombohedral anti-cyclic polytypes, re- 
spectively. 

The above expression can be easily derived by first 
summing triplets of  terms of  I~0hk.tl 2 with z~ = ~, z 2 --- 
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Table  2. Observed and calculated intensities for the new polytypes 
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( I )  54R (13 5)3 

l O b s e r v e d  

25 w 3.905 
22 m 11.207 
19 s (19_~16) 17.095 
16 s 16.351 
13 m 9-367 
10 w (10>4) 2.249 
7 a 0.009 
4 w 1.341 
1 w 1.771 

- 2  v v w ( - 2 " , , - 5 )  0-385 
- 5  v v w  0.350 
- 8  w 2.800 

- 1 1  w ( - 1 1 > - 8 )  3.685 
- 1 4  v v w  0.193 
- 1 7  v v s  100.000 
- 2 0  v s  51.753 
- 2 3  w 3.116 
- 2 6  v w  0.214 

(3) 54R (6 5 4 3) 

l Observed 

C a l c u l a t e d  

C a l c u l a t e d  

25 m (25>4) 10.452 
22 s 28.122 
19 vs (19>13) 56.222 
16 s 15-529 
13 v s  49.613 
10 vw 0.575 
7 w (7>--5) 3.739 
4 m 7.120 
1 w 2.583 

- - 2  v w  0.784 
--5 w (--5>1) 3.093 
--8 m 6. 198 

--11 s (--11-,---23) 25.002 
--14 m ( - - 1 4 > - 8 )  7.480 
--17 v v s  100-000 
--20 v s  (--20~_13) 41.546 
--23 s 26.580 
--26 m ( - - 3 6 > - 1 4 )  9.272 

\ 
(5) 18L (7 3 5 3) \ 

\ 
l O b s e r v e d  C a l c u l a t e d  

9 m 3.420 
8 s 10-881 
7 s (7>8) 13.368 
6 m ( 6 > - 2 )  6.250 
5 vs 21.357 
4 w 0.609 
3 s (3~_7) 13.905 
2 v v w  0.215 
1 w ( 1 > 4 )  1.713 
0 a 0.000 

, 1  w ( - 1 > 4 )  1.139 
- 2  m 4.184 
- 3  m ( -3~_-9 )  3.476 
- 4  v s  (5-~-49 17.823 
- 5  v w  (-5_~--7)~ 0.729 
- 6  v v s  100.000 
- 7  v w  0.687 
- 8  s 16.373 
- 9  m 3-420 

(2) 18L (15 3) (7) 54R (8 4 3 3) 3 

l O b s e r v e d  C a l c u l a t e d  l O b s e r v e d  C a l c u l a t e d  

9 w 2.189 26 s 22.714 
8 w (8>9) 2.967 23 w 3.996 
7 w (7--~5) 3-645 20 s 26.485 
6 w (6>5) 4-000 17 vs 45.606 
5 w (5>4) 3.870 14 vw 0.703 
4 w 3.229 11 s 23.307 
3 v w  (3>2) 2.225 8 m 8.839 
2 v w  1-141 5 v w  (5>14) 1.477 
1 v v w  0.310 2 v v w  0.241 
0 a 0.000 - 1  w ( - 1 > 5 )  2.472 

- I  v v w  0.310 - 4  v w  (-4_~5) 1.743 
- 2  v w  1.141 - 7  m ( - 7 < - 1 0 )  7.863 
- 3  v w  ( - 3 > - 2 )  2.225 - 1 0  m ( - 1 0 > - 2 5 )  8.604 
- 4  w 3.229 - 1 3  s 19.773 
- 5  w ( - 5 > - 4 )  3.870 - 1 6  v s  44.604 
- 6  v v s  100.000 - 1 9  v v s  100.000 
- 7  w ( - 7 > - 8 )  3.645 - 2 2  m ( - 2 2 > - 2 5 )  9.794 
- 8  v w  ( - 8 > - 9 )  2.967 - 2 5  m 5.351 
- 9  v w  2-189 

(4) 54R (6 5 5 2)3 (9) 54R (8 5 2 3) 3 

l Observed Calculated l Observed 

26 w (26>2) 1.064 
23 s (23>20) 24.366 
20 s (20~_14) 14.173 
17 v s  35.723 
14 s (14>11) 15.495 
11 s 10.453 
8 m 3.763 
5 m (5>8) 4.859 
2 w 2.960 

- I  m (-1-=_5) 4.307 
- 4  w 1.125 
- 7  w ( - 7 > - 4 )  1.593 

- 1 0  m 4-169 
- 1 3  m ( - 1 3 > 5 )  8.887 
- 16 v v s  100.000 
- 1 9  w ( -  19~_--7) 1.678 
- 2 2  v s  ( - 2 2 > 1 7 )  56.935 
- 2 5  m 5.362 

(6) 18L (8 3 4 3) 

l O b s e r v e d  C a l c u l a t e d  

C a l c u l a t e d  

25 s 24.663 
22 s (22>25) 33.008 
19 m 6.643 
t6 v s  ( 1 6 > - 2 0 )  65.047 
13 s (13>25) 29.650 
10 v w  1.103 
7 w (7>4) 3.671 
4 w 3.107 
1 w ( 1 > 4 )  4.115 

- 2  v w  ( - 2 > 1 0 )  1.797 
- 5  w ( - 5 < 1 )  2.417 
- 8  s 18.982 

- 1 1  w ( -  11~_4) 3.393 
- 1 4  m ( - 1 4 > 1 9 )  9-750 
- -  17 v v s  100-000 
- 2 0  v s  52.107 
- 2 3  m (- -23>--  14) 11.648 
- 1 6  w ( - 2 6 > - - 1 1 )  4.074 

(8) 18L (9 3 3 3) 

l O b s e r v e d  C a l c u l a t e d  

9 s 13.681 
8 m 4.635 
7 m (7>8) 5.695 
6 s 25.000 
5 m (5>4) 6.046 
4 m 5.046 
3 s 13.905 
2 w 1.782 
1 vw 0.485 
0 a 0.000 

- 1  vw ( -  1~_1) 0.485 
- 2  w (-2~_2) 1-782 
- 3  s 13.905 
- 4  m 5.046 
- 5  m ( - 5 > - 4 )  6.047 
- 6  v v s  100.000 
- 7  m ( - 7 > - 8 )  5.695 
- 8  m 4.635 
- 9  s 13.681 

(10)  54R (9 4 2 3) 3 

1 O b s e r v e d  

26 s (26<23) 17.823 
23 s (23~_17) 28.298 
20 w (20~_- 1) 1.502 
17 s 28.921 
14 v s  41.636 
II  w (11>5) 3.997 
8 w (8>11) 4-179 
5 w (5>2) 2.549 
2 w (2~_- 1) 1.480 

- l  w 1.873 
- 4  m ( - 4 > - 7 )  6.871 
- 7  m 5.060 

- 1 0  m ( -  10_~- 13) 9-211 
- 13 m 9.474 
- 1 6  v s  ( - 1 6 > 1 4 )  51.348 
- 19 v v s  100.000 
- 2 2  m ( - 2 2 < - 1 3 )  8.168 
- 2 5  w 1.406 

(11)  54R (4 3 4 3 2 2)3 (12)  18L (8 2 2 2 2 2) 

l O b s e r v e d  C a l c u l a t e d  l O b s e r v e d  

9 s 10.261 25 
8 v w  (8<1) 0.559 22 
7 v s  (7>4) 22.093 19 
6 m (6_~2) 6-250 16 
5 s 9.993 13 
4 v s  17.283 I0 
3 a 0.000 7 
2 m 6.295 4 
1 v w  ( 1 > - 2 )  0.802 1 
0 a 0.000 - 2  

- 1  w 1.882 - 5  
- 2  v w  0.215 - 8  
- 3  s ( - 3 ~ _ - 4 )  10.429 - 11 
- 4  s 11.844 - 14 
- 5  w ( - 5 ~ _ - 7 )  2.829 - 1 7  
- 6  v v s  100.000 - 2 0  
- 7  w 2.665 - 2 3  
- 8  s ( - 8 ~ - - 9 )  10.881 - 2 6  

9 s 10-261 

m 5.209 
s (22>19) 37.276 
s 27.037 
w (16~_1) 3.183 
v s  ( 1 3 > - 1 1 )  78.184 
v v w  0.076 
w 1.272 
s (19>4) 17.529 
w 3.305 
w ( - 2 > 1 )  4.746 
w ( -5_~-2 )  4.226 
m ( - 8 > - 1 4 )  9.126 
v s  40.544 
m ( - 1 4 > - 2 3 )  6-661 
vvs 100.000 
s (-20_~19) 27. 135 
m 5.598 
v s  ( - 2 6 > - 1 1 )  54.470 

C a l c u l a t e d  

C a l c u l a t e d  

9 vs 36-034 
8 m 7.235 
7 w (7>2) 3.216 
6 a 0.000 
5 s (5>4) 28.312 
4 s (4>0) 27.818 
3 a 0.000 
2 w ( 2 > - 1 )  2.782 
1 m 5.331 
0 s 19.174 

- I  w 2.271 
- 2  vw 0.336 
- 3  a 0.000 
- 4  m ( - 4 > 1 )  7.876 
- 5  v v s  I00-000 
- 6  vs 39.020 
- 7  s (-7~_4) 26.665 
- 8  s ( - 8 > - 7 )  16.982 
- 9  v s  36.034 
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f l +  m a n d z  3 = f l +  2m, where 1 _<fl_<m, andthen 
performing the summation from 1 to m. 
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Abstract 

On the basis of the solution of six unknown structures 
by a real-space Patterson search the merits and 
limitations of the method are discussed. It is shown 
how chemical information can be used to provide a 
reliable starting point for direct methods when there is 
no automatic solution. Two examples demonstrate the 
potential usefulness of force-field calculations for 
generating the geometries of appropriate search frag- 
ments in the absence of related crystal structures. The 
further discussion deals with future applications of the 
vector search method to determine large structures. A 
Patterson search program, which incorporates all 
necessary features of a modern program and is 
compatible with SHELX84,  is being developed. 

Introduction 

Nowadays the overwhelming majority of light-atom 
structures are determined by direct methods, many of 
them automatically. Although these techniques have 
proved extremely powerful, they cannot solve all 
structures and even less complex problems still resist 
solution, sometimes for reasons not obvious to the 
investigator. The principal weakness of the method lies 
in its dependence on a few key reflections during the 
early stages of phase determination. If some of them 
are measured incorrectly (e.g. weak data from very 
small crystals, or poor resolution arising from solvent 
disorder), an inappropriate starting set may be chosen 
and thus the whole chaining process can go wrong. 
Current research activities in this field centre on how to 
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improve this situation (Furusaki, 1979; Jia-Xing, 1981; 
Hull, Viterbo, Woolfson & Shao-Hui, 1981; Schenk, 
1983). Furthermore, direct methods are based on a 
random distribution of atoms, so that structures which 
deviate considerably from this assumption (e.g. those 
containing planar rings) often present problems. 

Difficult structures may eventually be solved by 
varying one or several parameters that govern the 
phasing procedure. If this does not work either, the 
problem reduces to an often frustrating trial-and-error 
approach in which many phase sets are tested. On the 
other hand, valuable chemical information, which for 
most (organic) structures is at least partially present, is 
not fully used by direct methods. It seems paradoxical, 
especially to a chemist, that even crystal structures of 
molecules whose total geometry is well known cannot 
be determined. Therefore, instead of using chemical 
knowledge only indirectly, e.g. to modify E values or 
recognize correct electron-density maps, one should try 
to use it directly in those cases where direct methods 
fail. 

The Patterson function differs from the statistical 
methods in that all data are used simultaneously and 
independently of each other; it is therefore less sensitive 
to a few incorrectly measured or missing reflections. 
Since the resulting vector map contains in principle the 
whole structural information, attempts have been made 
to solve light-atom structures semi-automatically from 
Patterson syntheses (Mighell & Jacobson, 1963; 
Gorres & Jacobson, 1964; Simpson, Dobrott & 
Lipscomb, 1965). However, considering the expected 
vector peak density it is quite hopeless to unravel more 
complex problems ab initio, i.e. without additional 
information. If part of the molecular geometry is 
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